精品一区二区在线欧美日韩_人人狠狠综合久久亚洲_色婷婷亚洲一区二区三区_国产精品久久久久精品综合

  • <var id="xyaoh"><tr id="xyaoh"></tr></var>
  • Wuxi Gotele Metal Products Co., Ltd : CN EN
    首頁(yè) >>新聞動(dòng)態(tài) >>金屬行業(yè)新聞

    Cathode made from triangular macrocycle hosts complex metal cations in a rechargeable aluminium battery

    Scientists have designed a triangle-shaped molecule to make the first rechargeable aluminium battery that works with cations, getting one step closer to cheap and powerful batteries that could outperform lithium-ion systems.1

    The battery – which can be recharged thousands of times – is the first to run on aluminium complex cations. This solves a conundrum in existing aluminium-ion systems: they work with complex anions and consume a lot of electrolyte.

    Today, many portable devices are powered by lithium-ion batteries. But despite their popularity, such batteries are still expensive and may present safety issues. Aluminium devices are a promising alternative because the element – the anode material in such batteries – is the third most abundant in the Earth’s crust. It is not only cheap but also less reactive than lithium, which makes it safer.

    Each aluminium atom can release three electrons upon discharge, giving aluminium batteries a potentially high energy density. But Al3+ ions can interact with electrolyte and cathode, reducing the battery’s lifetime. In 2015, researchers developed a battery that instead stores chloroaluminate ions (AlCl4).2 However, a large amount of electrolyte was required to sustain chloride ion supply and battery operation, so finding a host electrode that accommodates all these ion remains a challenge.

    Researchers working with Jang Wook Choi at Seoul National University, Korea, and Nobel laureate Fraser Stoddart at Northwestern University, US, have now developed a cathode that can store AlCl2+ ions instead of AlCl4. This means only two chloride ions per aluminium ion are required, which makes this battery less electrolyte-demanding. This is the first time a battery runs on aluminium complex cations, explains Choi.

    Choi and his colleagues synthesised a redox-active triangular phenantrenequinone-based macrocycle and used it to build the electrodes. ‘[The macrocycle] maintains a stable layered superstructure for the insertion and extraction of aluminium complex ions,’ says Dong Jun Kim, University of New South Wales, Australia, who also worked on the battery.

    The material was tested in a two-electrode cell using an imidazolium chloride electrolyte and an aluminium anode. The new cathode showed a reversible capacity of 110mAh/g at a current rate of 0.1A/g, with almost 60% capacity retention after 5000 charge–discharge cycles.

    ’The use of abundant elements and demonstration of thousands of cycles shows that the system has some properties suitable for large-scale energy storage,’ says Doron Aurbach, an electrochemist at Bar-Ilan University, Israel. ‘My concern: The electrolyte solutions are based on ionic liquids, which are usually expensive.’

    首頁(yè)電話產(chǎn)品導(dǎo)航
    CN EN
    灌云县| 华安县| 全南县| 盘锦市| 报价| 北宁市| 汝州市| 贵阳市| 惠来县| 合山市| 古丈县| 富蕴县| 罗平县| 绵阳市| 黎城县| 昌平区| 新竹市| 黔东| 闻喜县| 蒲城县| 永仁县| 襄汾县| 东乡| 广灵县| 蚌埠市| 九龙县| 长治市| 资溪县| 石首市| 嘉定区| 兰考县| 五华县| 金昌市| 阳东县| 延边| 政和县| 桦川县| 崇信县| 桐乡市| 苗栗县| 泽普县|